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Abstract
Automatic measurement of blood vessel tortuos-
ity is a useful capability for automatic ophthal-
mological diagnostic tools. We describe a suite
of automated tortuosity measures for blood vessel
segments extracted from RGB retinal images. The
tortuosity measures were evaluated in two classifi-
cation tasks: (1) classifying the tortuosity of blood
vessel segments and (2) classifying the tortuosity
of blood vessel networks. These tortuosity mea-

sures were able to achieve a classification rate of
91% for the first problem and 95% on the second
problem, which confirms that they capture much
of the ophthalmologists' notion of tortuosity.

1 Introduct'ion
Normal retinal blood vessels are straight or gen-

tly curved. In some diseases, the blood vessels
become tortuous, i.e., they become dilated and
take on a serpentine path. The dilation is caused
by radial stretching of the blood vessel, and the
serpentine path occurs because of longitudinal
stretching. The tortuosity may be focal, occur-

ring only in a small region of retinal blood ves-

sels, or it may involve the entire retinal vascular
tree. Figure 1 shows images with tortuous and
non-tortuous blood vessels.
Many disease classes produce tortuosity, includ-

ing high blood flow, angiogenesis, and blood vessel
congestion. Information about disease severity
or change of disease with time may be inferred by
measuring the tortuosity of the blood vessel net-
work. Consequently, there is a benefit in measur-
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ing tortuosity in a consistent, repeatable fashion.
Given the increased availability of digitized fun-

dus photographs, automated tortuosity measure-
ments are now feasible. Kaupp et al. [8] have re-
ported unpublished results of an automated tor-
tuosity measurement that uses a Fourier analy-
sis of the perpendicular along the blood vessel.
Smedby et al. [9] describe five tortuosity measures
used to measure tortuosity in femoral arteries. In-
cluded are several measures of the integral curva-
ture along the blood vessel, the number of inflec-
tion points of the vessel and the fraction of the
vessel that has high curvature. Their experiments
examine properties of these measures like repro-
ducibility and scalability. Capowski, Kylstra and
Freedmen [1] describe a measure of blood vessel
tortuosity based on spatial frequencies. Zhou et
al. [11] have also described a method for distin-
guishing tortuous and nontortuous blood vessels
in angiograms. In a preliminary abstract, we have
proposed a tortuosity measure based on the inte-
gral curvature along a blood vessel [7].

In this paper we describe tortuosity measures
that are used to measure the tortuosity of retinal
blood vessels as well as the retinal blood vessel net-
work. To assess the relative utility of these mea-
sures, they were used to classify blood vessel seg-
ments and blood vessel networks. The segments
used in these classification experiments were ex-
tracted manually and automatically, and we dis-
cuss how the tortuosity measures can be influenced
by properties of the method used to extract the
vessel segments. The classification rate was as
high as 91.5% for blood vessel segments and 95%
for blood vessel networks. While no single tortuos-
ity measure was clearly superior, the experiments
recommend a total squared curvature measure.
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Figure 1: Images with (a) tortuous and (b) non-
tortuous blood vessel segments.

2 Tortuosity Measures

2.1 Abstract Properties
This section discusses properties of tortuosity
measures that are motivated by the ophthalmol-
ogist's notion of tortuosity. These properties are
defined for parametrized differentiable curves C =
(x(t), y(t)), with t in an interval [to, tl]. We model
retinal blood vessels with such curves. A tortuos-
ity measure r takes a curve C as its argument and
returns a real number.
Invariance to translation and rotation.

While ophthalmologists' judgements of vessel tor-
tuosity do seem to incorporate the relative cur-
vature of other vessels on the fundus, we believe
their judgement is largely independent of the lo-
cation or orientation of the vessels. Our measures
assume that vessel tortuosity is not dependent on
the location or orientation of the vessel.
Response to scaling. Ophthalmologists do

not seem to have unequivocal intuitions about
whether the tortuosity of a vessel depends on its
scale (i.e. its absolute size). However, it is clear
that if scale does affect the tortuosity then it
does so in a multiplicative manner. That is, if

curve C = (x(t), y(t)) has tortuosity r(C), curve
C' = (yx(t), -yy(t)) has tortuosity /(y) * r(C) for
some function ,(. If tortuosity is invariant to scal-
ing, /3(y) _ 1; and if tortuosity is inversely related
to scale, /3(y) < 1 when 7 > 1.
Vessel Compositionality. It appears to be

the intuition of ophthalmologists that a vessel that
is composed of two segments of different tortuosi-
ties would have a degree of tortuosity between the
tortuosities of its constituent segments. This as-
sumes that the two segments are smoothly con-
nected, but the "order" in which segments occur
in the vessel is not important. A method of com-
puting the tortuosity of a whole vessel that is con-
sistent with this intuition is to weight the tortuos-
ity of each constituent segment by the fraction of
arc length which that segment contributes to the
vessel. We call this method weighted additivity.

It also appears that if a vessel segment with
a given tortuosity were extended with a segment
of the same tortuosity, the resulting vessel would
have the same tortuosity as either of its segments.
We say that a measure has the property of chord-
colinear compositionality if a vessel C is segmented
such that each segment has the same tortuosity
and the chords of the segments are colinear, then
the tortuosity of the vessel is the same as the con-
stituent segments.
Network Compositionality Another type of

compositionality concerns the way in which the
tortuosity measures for vessel segments are com-
bined to determine a tortuosity measure for an
entire vessel network. We have yet to develop a
method for extracting a complete vessel network,
so we calculate the tortuosity of a blood vessel
network using the weighted additivity of all of the
blood vessel segments in the image.

2.2 Definitions
Using our previous definition of a curve segment
C, we define a suite of tortuosity measures. We be-
gin by defining the components used to construct
these measures. The arc length of C is s(C) =
ft*1 /x'(t)2+y'(t)2dt. The chord length of C is
chord(C) = /(X(to) -x(tl))2 + (y(to) -Y(tl))2.
The curvature of C at t is

K(t) - x'(t)y"(t) - x"(t)y'(t)
[y'(t)2 + X'(t)2]3/2

The total curvature of a curve segment is tc(C) =
ftl lKc(t)l dt, and the total squared curvature of C
is tsc(C) = fJC,'K(t)2dt.
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Table 1 defines the measures that we examine
in our experiments and describes their response
to scale. These measures have zero measure for
straight vessel segments and increasing positive
measure for segments as they become tortuous.
Except for r2 and Tr3, all of these measures have the
property of chord-colinear compositionality. Only
74 and r5 have the property of compositionality.

Tortuosity Response
Measure to Scale

Tr s(C)/chord(C) - 1 1
72 tc(C) 1/7
T3 tsc(C) 1/72
T4 tc(C)/s(C) 1/72
5 tsc(C)/s(C) 1/73
r6 tc(C)/chord(C) 1/72
T7 tsc(C)/chord(C) 1_/_ 3

Table 1: Summary of the tortuosity measures and
their response to scale.

The measure ri simply measures the tortuosity
of the segment by examining how long the curve
is relative to its chord length. This measure is
the same as the distance factor tortuosity mea-
sure described by Smedby et al. [9]. Measures
r2 and T3 directly calculate the curvature of the
curve. The T3 measure differs from r2 in that it
places a greater emphasis on the parts of the curve
that have high curvature, and deemphasizes the
parts of the curve that have low curvature. Since
the curvature is greater for small vessels, 73 will
emphasize the tortuosity of smaller vessels more
than T2. The r2 measure is the same as the total
curvature measure described by Smedby et al. [9].
The remaining measures are "length-normalized."
The measures 74 and m5 average the total curva-
ture measures by the arclength, while r6 and ry
average by the chord length.

2.3 Tortuosity Calculation
The abstract definitions for the tortuosity mea-
sures were modified to work with skeletonized
blood vessels that represent the center line of
blood vessels with sequences of pixel locations.
Following a suggestion of Flynn and Jain [6], we
smoothed the pixel representation of a blood ves-
sel segment, using a low-pass filter, before making
our tortuosity calculations. This eliminated un-
desirable noise that is due to the discrete nature
of the pixel representation. For example, a blood
vessel at a 45 degree angle in a image can have a

pixel representation that is a zigzag line of pixels
along the blood vessel. The smoothing operation
also eliminated noise that was introduced when in-
dependent segments were linked together to form
a longer segment. Preliminary experiments in-
dicated that two applications of this smoothing
method were sufficient to reduce this noise.

3 Methods
We examined the utility of our tortuosity measures
by using them as features in two different classifi-
cation problems. In the first problem, we classified
blood vessel segments as tortuous or non-tortuous.
In the second problem, we classified the tortuosity
of the blood vessel network.

3.1 Data
Blood vessel segments were extracted from a set
of 20 retinal images in two different ways: auto-
matically and manually. To extract blood vessel
segments, we applied the blood vessel filter de-
scribed in Chaudhuri et al. [3] to the green plane
of an RGB image. The green plane was selected
because it typically exhibits the greatest contrast.
The filter was applied at 12 orientations over 1800.
The final response map was computed by taking
the maximum response of the 12 filters at each lo-
cation. We thresholded and thinned the response
map of the blood vessel filter to produce an im-
age containing binary edge segments. The edge
segments were primarily blood vessels, but also
included some edges of large objects like the optic
nerve.
To create the set of automatically extracted

blood vessel segments, the edge segments were
classified as blood vessels or hon-blood vessels us-
ing the linear classifier described in Cote et al. [2].
There were 981 automatically extracted blood ves-
sel segments, of which 252 were tortuous. and 729
were non-tortuous.
The unclassified edge segments were also used to

extract blood vessel segments manually. The edge
segments were manually identified as blood vessels
and linked together to form the final blood vessel
segments. Care was taken to link vessel segments
only if the smoothness of the link reflected the cur-
vature of the underlying blood vessel. There were
284 blood vessels extracted manually, of which 133
were tortuous and 151 were non-tortuous.

After extraction, the tortuosity measures were
calculated for each segment, and the segments
were labeled by one of the authors (MG), a retinal
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specialist who has experience with diseases caus-
ing tortuosity in retinal blood vessels. These two
sets of extracted blood vessels were used for the
first classification problem.

For the second classification problem, the ex-
tracted blood vessels were used to calculate the
network tortuosity measures for each image. The
vessel network tortuosity of the 20 retinal images
were labeled; there were 10 tortuous and 10 non-
tortuous images.

3.2 Classification
We used a logit model [4] to classify the data for
both classification problems. For problems with
two classes, a logit model computes a weighted
sum of the input features passed into a logistic
function. The output of the logit model is be-
tween zero or one. To perform classification, the
output is thresholded to zero or one, depending on
whether the output is greater or less than 0.5.
Two measures were used to compare the per-

formance of classifiers using the different tortuos-
ity measures: the classification rate and the in-
tegrated relative operating characteristic (ROC).
The classification rate is simply the proportion
of test samples that are correctly classified. The
ROC measures the proportion of test samples that
are correctly classified as positive instances (true-
positives) as a function of the proportion of nega-
tive test samples that are classified as positive in-
stances (false-positives) [10]. The integrated ROC
measures how sensitive a classifier is to the choice
of the classification threshold; values closer to 1.0
are better.
The performance on the samples used to train a

classifier is typically an optimistic estimate of the
classifier's performance on a new set of data [5].
To estimate the true error rate, we used cross-
validation to partition the data into two subsets
that are used to train and test the data. For both
classification problems a variety of partitions of
the data were selected. A different classifier was
trained and tested on each partition, and the mean
classification rate and integrated ROC on the test-
ing subsets were used to evaluate the expected per-
formance of a classifier.

4 Results
In both classification problems, we performed ex-
periments that examine the classification rate us-
ing each tortuosity measure by itself. We also
performed classification using all of the tortuosity

measures together. Table 2 summarizes the ex-
perimental results for the two classification prob-
lems. The experiment name indicates whether the
data were manually extracted or automatically ex-
tracted, and indicates which tortuosity measures
were used in the experiment. For most of the
classifiers, the relative integrated ROC values mir-
rored the relative classification rates. An interest-
ing exception is rl, which had a relatively high
classification rate for automatically extracted seg-
ments but a relatively low integrated ROC value.

5 Discussion

The experimental results demonstrate that the
proposed tortuosity measures can be used to clas-
sify the tortuosity of blood vessel segments and
blood vessel networks. In particular, these re-
sults show that the tortuosity measures can be ef-
fectively used with automatically extracted blood
vessel segments, which is important for the devel-
opment of retinal image analysis tools.
There are several trends in our results. First,

the classifiers tend to have better performance on
the automatically extracted data set. This can be
attributed to the short, simple blood vessel seg-
ments in this data set. The shorter lengths of these
segments avoid difficulties when an entire vessel
segment is labeled tortuous, but subsegments of
the vessel are not tortuous, which makes it diffi-
cult to classify.

It is surprising that the classification perfor-
mance increased for r4 and r5 when classifying
the blood vessel network. These measures have
the compositionality property, so the blood vessel
networks should have roughly the same tortuosity
measure for both the manually and automatically
extracted data sets. An analysis of the data indi-
cated that the performance difference was due to
a difference in the extraction process on one of the
images. The automatically extracted segments in-
cluded some highly curved, erroneous blood vessel
edges that were not included in the edges for the
manually extracted segments.
We have observed several different ways in

which the extraction process influenced the per-
formance in the classification tasks. First, the
segmentation method can affect the tortuosity of
the extracted vessels. For example, our segmenta-
tion algorithm breaks up vessels at points of very
high curvature and tends to smooth out very thin
blood vessels. The length of the extracted seg-
ments can also affect the utility of the tortuosity
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Segments 11 Networks
Measure Classification Rate [Integrated ROC Classification Rate Integrated ROC

Manual Auto Manual I Auto Manual Auto {Manual Auto
79.5 91.3 0.897 0.955 65 90 0.61 0.91

172 79.3 82.7 0.875 0.915 70 85 0.79 0.85
X3 82.9 89.5 0.927 0.960 90 90 0.86 0.86
74 80.4 88.5 0.905 0.951 80 95 0.83 0.99
X5 81.2 87.7 0.906 0.941 85 90 0.84 0.83
76 82.1 89.1 0.921 0.956 80 90 0.81 0.91
77 82.0 88.1 0.914 0.944 85 90 0.88 0.91
ALL 85.6 91.5 0.935 0.970 95 90 0.95 0.86

Table 2: Results for the problem of classifying blood vessel segments and blood vessel segments. The mean
of the cross-validation classification rate and integrated ROC.

measure for classification. The shorter segments in
the automatically extracted data sets is the prin-
ciple reason for the better classification results for
these data sets. Finally, extracting blood vessel
segments automatically can effect the tortuosity
measures of blood vessel networks since they can
include misclassified segments. This problem did
not seriously impact our results because the blood
vessel classifier used to automatically extract the
blood vessel segments is quite accurate [2].
Although our classification results do not

strongly support the use of one measure over the
others, the r3 measure can be recommended for a
tortuosity measure. Both the X3 and r4 measures
seem closest to the ophthalmologist's notion of tor-
tuosity, though the T3 measure performed slightly
better on the classification tasks. Classification
with all of the tortuosity measures was better than
73, but not in a statistically signficant manner.
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